查看原文
其他

谷歌无人车重磅报告: 通往完全自动驾驶之路

2017-10-18 199IT互联网数据中心

谷歌发布了一份无人车重磅报告: 《通往完全自动驾驶之路》 。这份42页的报告从技术层面详细展示了谷歌Waymo无人车的软件、硬件、测试流程,还讲了无人车行驶的限制条件,“失败”时如何安全停车,甚至车祸后如何处理、记录哪些数据,以及车辆上采取的网络安全措施等等。

按照提纲来说,共有如下几部分内容:


  • 谷歌无人车的安全设计理念

  • Waymo无人车是如何工作的

  • 测试和验证是如何进行的

  • 无人车相关交互细节

这份报告是谷歌对Waymo无人车自动驾驶技术方案的一次详尽解读。量子位摘录其中的要点如下。

1、无人车要解决的四大问题

根据Waymo在报告中的介绍,一辆无人车站在马路上,和人类司机一样,通常需要回答4个问题:

  • 我在哪?

  • 我周围有什么?

  • 接下来要发生什么?

  • 我该怎么办?


为了解决“ 我在哪 ”这个问题:

Waymo的无人车依靠的不是GPS,而是是团队自己建立的详细三维地图,上面突出显示了路况、“倒鸭子”、人行道、车道标记、人行横道、交通信号灯、停车标志和其他道路特征信息,也就是我们常说的高精地图。通过将传感器实时数据和预先建立的高精地图相比对,车辆就能确定自己在哪了。

解决“ 我周围有什么 ”:


是靠传感器和软件的配合,来识别车辆、行人、自行车、施工现场、障碍物,以及辨别交通灯的颜色、临时停车标志等等。

“ 接下来要发生什么 ”则是对车辆周围每一个动态对象未来运动的预测:

Waymo的软件能根据对象当前的速度和轨迹预测未来的运动,也知道车辆和行人、自行车的区别。而最后一个问题:“ 我该怎么办 ”,指的是无人车的决策。Waymo的软件会根据前三个问题提供的信息,来选择正确的轨迹、速度、车道和转向操作。

Waymo无人车解决这四个“车生终极问题”的目标,是在特定地理区域内、特定条件下,完全不需要人类介入来完成整个动态驾驶任务,也就是国际汽车工程师协会(SAE International)所定义的L4自动驾驶。要实现这个目标,依靠的是车上搭载的传感器和自动驾驶软件

传感器

Waymo在报告中以菲亚特-克莱斯勒Pacifica车型为例,详细介绍了他们在无人车上所用的自动驾驶传感器,这些传感器赋予了无人车360度视野,最远能“看清”300米外的物体,有三个橄榄球场那么远。

  • LiDAR(激光雷达),昼夜均可使用,它每秒可以向360度的方向发出数百万激光脉冲,并且可以测量激光从一个表面反射回汽车所花费的时间。Waymo的系统包含3种自主开发的LiDAR:能够提供四周连贯视野的短距离LiDAR、高清中距离LiDAR,以及能够看到几乎3个橄榄球场之外的新一代长距离LiDAR。

  • 视觉(摄像头)系统,这个视觉系统包含为了像人类一样看到周围世界而设计的摄像头,但它具备360度的同步视野,而人类驾驶员只能看到120度的视野。由于高清视觉系统能够探测颜色,因此可以帮助系统识别交通信号灯、施工区、校车和急救车的频闪灯。Waymo的视觉系统由多组高清摄像头组成,目的是在白天和低光照条件下都能看清远方的物体。

  • 雷达系统,雷达系统使用多种波长来探测物体和运动。这些雷达波能够绕过雨滴等物体,因此在雨天、雪天和雾天也能发挥效果,而且不受昼夜变化的影响。Waymo的雷达系统具备连续的360度视野,所以可以车辆前后和两侧的道路参与者的速度。

  • 补充传感器,Waymo汽车还有很多额外的传感器,包括可以听到警车和急救车警笛的音频探测系统。


软件

无人驾驶软件是车辆的“大脑”。利用传感器获取信息后,还要借助这些信息针对每种情况制定最佳驾驶决策。Waymo花了8年时间,使用机器学习和其他先进的工程技术开发和改进了软件,并通过数十亿英里的模拟驾驶和超过350万英里的路测对软件进行了训练。

这套系统能够深刻理解世界的背景信息;这是L4级自动驾驶技术的关键差异点。Waymo的无人驾驶软件不仅能探测到其他物体,还能理解这些物体是什么、它可能的行为方式以及会对汽车自身的道路行为产生何种影响。无人车正是凭借这种方式才得以在全自动模式下安全地上路行驶。这套软件由很多不同的部分组成,主要包括三大组件:感知(perception)、行为预测(behavior prediction)和规划器(planner)。

感知系统:感知系统是对路上物体进行探测和归类的组件,它还可以持续测算物体的速度、方向和加速度。无人驾驶软件通过传感器获取详细数据,然后将其转化成现实世界的全面视图。感知系统帮助无人车区分行人、骑行者、摩托车手、汽车等道路参与者。它还能区分交通信号灯等静态物体的颜色。对于这些物体而言,感知系统使得整套系统可以在语义上理解周围的车辆——信号灯是否变绿,从而允许车辆前行,或者车道是否被前方的锥桶封闭。

行为预测:借助行为预测,软件可以对道路上的每个物体进行建模,并对其加以预测和理解。由于Waymo拥有数百万英里的驾驶经验,无人车能针对不同道路参与者可能的行为方式建立准确的模型。例如,软件能明白尽管行人、骑行者和摩托车手看起来相似,但他们的行为却大不相同。行人行进速度远慢于骑行者和摩托车手,但他们却能更加突然地改变方向。

规划器:规划器会考虑软件通过感知和行为预测手机的所有信息,然后为汽车规划一条路径。根据经验,最好的司机都信奉安全第一。正因如此,Waymo植入了防御性驾驶行为。例如,保持在其他驾驶员的盲区之外,以及为骑行者和行人留出额外空间。规划器还能提前思考几步之后的决策。例如,如果软件认为前方临近的车道因为施工被封闭,而且预计那条车道的骑行者会变道,规划器就可以做出减速决定,提前为骑行者腾出空间。Waymo还借助路测经验对驾驶模式进行改进,使得行驶过程更加顺畅,令车内乘客更加舒适,让其他道路用户可以预测无人车的动向。


PDF下载请加入数据知识星球获取,199IT感谢您的支持!

199IT热门报告重点推荐,可直接点击查阅:


| NOTICE |

微信公众平台目前已经推出订阅号置顶功能

点击我们的主页

将置顶公众号勾选

及时捕获精彩内容

 媒体商务合作

商务合作请联系微信号:dingli 或 Admin@199it.com。

获取更多数据,点击 “ 阅读原文 ”即可

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存